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Abstract. We compare the perturbatively calculated QCD potential to that obtained from lattice calcula-
tions in the theory without light quark flavours. We examine Etot(r) = 2mpole +VQCD(r) by re-expressing
it in the MS mass m ≡ mMS(mMS) and by choosing specific prescriptions for fixing the scale µ (dependent
on r and m). By adjusting m so as to maximise the range of convergence, we show that perturbative
and lattice calculations agree up to 3 r0 � 7.5 GeV−1 (r0 is the Sommer scale) within the uncertainty of
order Λ3

QCD r2.

1 Introduction

For decades, the static QCD potential VQCD(r), formally
defined from an expectation value of the Wilson loop, has
been widely studied for the purpose of elucidating the na-
ture of the interaction between heavy quark and antiquark.
In modern language, a link to physical reality can be made
naturally in the frame of potential–non-relativistic QCD
(potential–NRQCD) formalism [1–3], in which VQCD(r)
is identified with the leading potential in an expansion in
1/m of the heavy quarkonium system. Therefore, VQCD(r)
dictates, for instance, the bulk of the spectra of the bot-
tomonium and charmonium states.

Some time ago, there was a breakthrough that drasti-
cally improved the predictive power of perturbative QCD
for the QCD potential and the heavy quarkonium spec-
trum: the perturbative predictions for these quantities be-
came much more accurate. This was achieved by prop-
erly eliminating contributions from infrared (IR) degrees
of freedom in the computations [4,5]. The central quantity
is the total energy of a static quark–antiquark pair, defined
by the sum of the quark and antiquark pole masses and
the QCD potential, Etot(r) = 2mpole + VQCD(r). We can
achieve the decoupling of IR degrees of freedom (renor-
malon cancellation) at each order of the perturbative ex-
pansion by
(1) re-expressing the quark pole mass in terms of a so-
called short-distance mass, such as the MS mass, and
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(2) expanding mpole and VQCD(r) in the same coupling
constant.1

As a result, the perturbative predictions become sta-
ble against a variation of the renormalisation scale µ, and
also the perturbative series show a much better conver-
gence behaviour, as compared to those in the conventional
computations.

It was then natural to compare the perturbative QCD
predictions with existing experimental data or with other
theoretical predictions which incorporate non-perturbative
effects. The main aim of this program is to clarify the dif-
ferences between the perturbative QCD predictions and
the full QCD predictions, given the more accurate predic-
tions of the former. The first comparison [6] was made for
the bottomonium spectrum (and also for part of the char-
monium spectrum) between the perturbative prediction
and the experimental data. It was followed by a compar-
ison [7] between the perturbative QCD prediction of the
QCD potential and typical phenomenological potentials
(used in phenomenological approaches to heavy quarko-
nium physics), and then by a comparison [8] of the QCD
potential between perturbative QCD predictions and a lat-
tice computation. More elaborated analyses on each of
these comparisons followed subsequently [9–13]. In all of
these analyses, when IR contributions were appropriately
eliminated, the perturbative QCD predictions turned out
to agree with the experimental data/phenomenological po-
tentials/lattice results within estimated perturbative un-
certainties. Contrary to wide beliefs, there were no indica-
tions of large non-perturbative effects. Only much smaller

1 This is somewhat involved technically, since usually mpole

and VQCD(r) are expressed in terms of different coupling con-
stants
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non-perturbative contributions, which can be absorbed
into perturbative uncertainties, appear to be compatible
with these analyses.

In this paper we are concerned with the third type of
comparison: perturbative QCD prediction versus lattice
calculations. In the previous comparisons of this type, the
leading renormalon uncertainty of the perturbative QCD
potential was removed in various manners. In [8], the inter-
quark force (improved by renormalisation group methods)
was used instead of the QCD potential2; in [11], the leading
renormalon contribution (estimated by a sophisticated ap-
proximation) was subtracted from the QCD potential by
hand; in [12], the perturbative series was Borel-resummed,
taking into account the leading renormalon pole appro-
priately. We examine yet another method for removing
the leading renormalon. Namely, we examine the total en-
ergy Etot(r), as defined above, after re-expressing it in
terms of the MS mass renormalised at the MS mass scale,
m ≡ mMS(mMS). To achieve stable predictions over a wide
range of r, we adopt the scale-fixing prescriptions of [7,10].
These prescriptions introduce the scales dependent on r
and m, µ = µ(r, m), which are consistent with physical
expectations.

As stated, Etot(r) constitutes the leading part of the
non-relativistic Hamiltonian of the heavy quarkonium sys-
tem within the potential–NRQCD framework. We may
expect that a direct comparison of Etot(r), which deter-
mines the bulk of the heavy quarkonium spectrum, would
provide a clearer picture of the present status on the credi-
bility of the theoretical predictions based on the potential–
NRQCD framework, supplemented either by perturbative
QCD computations or by lattice computations of the po-
tentials; see e.g. [13–16] for analyses in this direction. Fur-
thermore, the scale-fixing prescription for Etot(r) we adopt
here is the only prescription which has been used in the
perturbative QCD predictions for the level structure of the
bottomonium states (including higher excited states) in-
corporating the renormalon cancellation. We will see that
indeed this prescription stabilizes the perturbative pre-
diction up to large distances, and hence it is suited for
predicting the energy levels of excited states of the heavy
quarkonium systems.

According to the renormalon argument, an uncertainty
of the perturbative QCD prediction for Etot(r) grows rap-
idly at large distances as Λ3

QCD r2 [17]. It is nevertheless
important to predict Etot(r) perturbatively at large r for
the following reasons.
(1) The level spacings among the bottomonium spectrum
have uncertainties smaller than the uncertainties of indi-
vidual levels. This is because the errors of Etot(r) at differ-
ent r are generally correlated. Indeed, the estimate of the
error of Etot(r), by changing input parameters or scale-
fixing prescriptions, is perfectly consistent with Λ3

QCD r2

[7,10]; on the other hand, the bottomonium level spacings
vary less, because the individual levels vary in a correlated
way. This is why the perturbative QCD predictions of the

2 See also [7] for some theoretical discussion on the inter-
quark force

whole level structure of the bottomonium in [6,9,13] made
sense.
(2) Many physical quantities of heavy quarkonium states
are sensitive to the short-distance part of the potential.
For instance, the fine splittings of the bottomonium ex-
cited states are sensitive to much shorter distance part
of Etot(r) as compared to the individual levels. As a re-
sult, perturbative uncertainties of the fine splittings are
much more suppressed (of order Λ3

QCD/m2) as compared
to uncertainties of the individual levels which directly re-
flect uncertainties of Etot(r). Predictability of Etot(r) up
to large distances ensures that the wave functions of the
excited states can be computed in the computation of the
fine splittings [13], although only the short-distance parts
of the wave functions are relevant. The order Λ3

QCD r2 un-
certainty of Etot(r) at large distances is just appropriate
to ensure the theoretical uncertainties (Λ3

QCD/m2) of the
fine splittings. These theoretical uncertainties, as well as
the level of agreement with the experimental values, of
the computed fine splittings (and the hyperfine splittings)
turn out to be comparable to those of the recent lattice
computations of these splittings; see [13,18] for details.

In our comparison of the QCD potential between per-
turbative QCD and lattice computations, we benefit from
considering a hypothetical world which contains no light
quark flavours. It is then possible to use the lattice cal-
culations of the QCD potential in the quenched approxi-
mation. On the other hand, in the perturbative prediction
for Etot(r), we have an additional parameter. Although
naively the quark mass is simply a constant independent
of r, due to our specific scale-fixing prescriptions, the value
of m affects the r-dependence of Etot(r) non-trivially. For
a heavy quarkonium system in this hypothetical world,
there is no strong motivation to choose a specific value
for m (as opposed to the studies [7,10]). Therefore, in our
analysis, we treat m as a controllable parameter for testing
stability of the perturbative prediction. We will show that
for those choices of m that give stable predictions, Etot(r)
is independent of m up to deviations of the order of the
expected theoretical uncertainty (after a suitable shift by
an r-independent constant). By varying m to achieve op-
timum convergence for large r, we can obtain perturbative
QCD predictions up to fairly long distances and compare
them to the results of lattice QCD.

The organisation of this paper is as follows: Sect. 2 sets
our conventions and gives some details of our perturba-
tive QCD calculation. Section 3 compares the lattice and
perturbative QCD data. Conclusions are given in Sect. 4.
We collect formulae related to the renormalisation-group
evolution of the strong coupling constant in the appendix.

2 Conventions and framework

We would like to compare the lattice data and the pertur-
bative predictions corresponding to the same theoretical
input. This will be carried out in the following manner.
For each lattice data set we calculate the Sommer scale r0
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defined by

r2 dVQCD

dr

∣∣∣∣
r=r0

= 1.65. (1)

Then the lattice data are expressed in units of r0. The
perturbative computations are expressed in terms of the
strong coupling constant defined in the theory with nl = 0
active flavours. We convert all the results into units of r0
using the relation between the Lambda parameter of the
running coupling constant (in the MS scheme) and the
Sommer scale [19]: ΛMS = 0.602(48) r−1

0 . We use the cen-
tral value of this relation in the main part of our analysis;
the effect of a variation of ΛMS inside the error interval
is discussed at the end of Sect. 3. All the predictions are
compared in units of r0. Furthermore, in order to main-
tain physical intuition, we will also use physical units. Al-
though there exists no rigid correspondence between the
physical scales of the real world and of the hypothetical
world, we follow the convention of the lattice calculations
in the quenched approximation. The numerical value on
the right-hand-side of (1) has been chosen so that for phe-
nomenological potentials r0 ≈ (400 MeV)−1. Whenever we
refer to values in units of MeV or GeV, we invoke this
translation.

The total energy of a static quark–antiquark system is
given by

Etot(r) = 2mpole + VQCD(r) . (2)

In perturbative QCD, the pole mass mpole is related to the
MS mass m up to three loops by the relation

mpole (3)

= m

{
1 +

4
3

αS(m)
π

+
(

αS(m)
π

)2

d1 +
(

αS(m)
π

)3

d2

}
.

The QCD potential up to O(α3
S) is given by

VQCD(r) = −4
3

αS(µ)
r

[
1 +

(
αS(µ)

4π

)
(2β0� + a1) (4)

+
(

αS(µ)
4π

)2 {
β2

0

(
4�2 +

π2

3

)
+ 2(β1 + 2β0a1)� + a2

}]
,

where � = log(µr) + γE.
Here and hereafter, we have set the number of light

flavours, nl, to zero, i.e. we will be neglecting the effects
of light quark loops. This corresponds to the quenched ap-
proximation in lattice QCD to which we want to compare
the perturbative results. The running coupling αS(µ) de-
pends on nl through the coefficients of the beta function;
the constants d1, d2, a1 and a2 also get contributions from
light quark loops and therefore depend on nl. For nl = 0,
their values are β0 = 11, β1 = 102, d1 ≈ 13.443, d2 ≈
190.39, a1 = 31/3 and a2 ≈ 456.74. The analytical formu-
lae can be found in [10].3

3 These formulae have originally been computed in [20, 21].
The mass relation (3) is re-expressed in terms of the coupling
of the theory without heavy quarks

After re-expressing αS(m) in (3) in terms of αS(µ) by
using the running of αS [see (8) in the appendix], and
dropping terms of O(αS(µ)4) and higher, we obtain the
total energy Etot(r; m, αS(µ), µ) which does not suffer from
the leading renormalon uncertainty.

Due to the truncation of the perturbative series at finite
order, Etot depends on the renormalisation scale µ. Two
scale-fixing prescriptions have been introduced in [7].

(1) The scale µ = µ1(r) is fixed by demanding stability
of Etot(r) against variation of the scale:

µ
d
dµ

Etot(r; m, αS(µ), µ)
∣∣∣∣
µ=µ1(r)

= 0. (5)

(2) The scale µ = µ2(r) is fixed to the minimum of the
absolute value of the last known term [O(α3

S) term] of
Etot(r):

µ
d
dµ

[
E

(3)
tot(r; m, αS(µ), µ)

]2
∣∣∣∣
µ=µ2(r)

= 0. (6)

Although these prescriptions are very different, it has
been shown that where both prescriptions exist, the total
energy is virtually identical for both prescriptions. As a
general feature of Etot(r), the convergence of the pertur-
bative series improves and the scale dependence decreases,
if we choose larger µ for smaller distances and smaller µ
for larger distances. Consequently, the range of the pertur-
bative calculation can be extended to much larger r with
these prescriptions than what would be possible with a
fixed, r-independent scale.

The prescriptions for the renormalon cancellation and
the scale fixing we adopt here follow (basically) those in
[7, 10, 13]. We refer the reader to these papers for more
detailed features of the perturbative predictions in these
prescriptions.

There are several methods to assess the reliability of
the prediction at a given distance: e.g. one can compare
the total energies as determined with the scales from both
prescriptions, one can compare the sizes of the individual
terms of the perturbative expansion of Etot or one can
study the scale dependence of Etot around the respective
scale. We will use these methods in Sect. 3.

The convergence properties of Etot(r) strongly depend
on the mass parameter m. We illustrate this in Table 1 for
r = 2r0 � 5 GeV−1. E

(i)
tot denotes the O(αi

S) term of the
perturbative series of Etot. It can be seen that the series
converges nicely, especially for m � 3 GeV. In Sect. 3 we
will see that those values for m that provide best con-
vergence also provide an optimal agreement with lattice
results. We find that, to our surprise, the perturbative se-
ries converges for distances as large as 3r0 � 7.5 GeV−1.
(Generally, the convergence behaviour of Etot(r) becomes
worse for larger r.) We note that the values of the scales
µ1,2 stay much larger than 1/r. See [7] for discussion on
this aspect.

For large distances, Etot depends on whether we use
the analytical solution or numerical solution of the renor-
malisation-group equation for the running of the strong
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Table 1. Convergence properties of Etot for r = 2r0 � 5 GeV−1. All numbers in GeV

m
µ = µ1 µ = µ2

µ E
(1)
tot E

(2)
tot E

(3)
tot Etot µ E

(1)
tot E

(2)
tot E

(3)
tot Etot

1.6 0.389 1.275 0.271 −0.280 4.466 0.419 0.921 0.243 0 4.364
1.8 0.413 1.126 0.109 −0.147 4.687 0.449 0.881 0.158 0 4.639
2.0 0.436 1.08 0.038 −0.096 5.022 0.477 0.882 0.111 0 4.993
2.2 0.458 1.073 −0.007 −0.069 5.397 0.502 0.901 0.077 0 5.378
2.4 0.478 1.085 −0.042 −0.051 5.792 0.525 0.929 0.049 0 5.778
2.6 0.497 1.109 −0.072 −0.039 6.197 0.545 0.965 0.022 0 6.187
2.8 0.515 1.140 −0.102 −0.029 6.609 0.563 1.006 −0.005 0 6.601
3.0 0.530 1.179 −0.133 −0.021 7.025 0.576 1.055 −0.035 0 7.019
3.2 0.543 1.224 −0.168 −0.012 7.444 0.453 1.680 −0.682 0 7.398
3.4 0.553 1.277 −0.208 −0.004 7.865 0.507 1.451 −0.393 0 7.859
3.6 0.559 1.342 −0.262 0.006 8.287 0.577 1.288 −0.207 0.005 8.287
3.8 0.554 1.439 −0.352 0.023 8.711 0.615 1.268 −0.173 0.012 8.708
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Fig. 1. Comparison between analytical and numerical running. The solid lines correspond to m = 3 GeV � 7.5/r0, the dashed
ones to m = 4 GeV � 10/r0

coupling constant αS(µ) (see the appendix). We show the
total energy for both types of running in Fig. 1 for two
values of m. In accordance with our previous works [7,
10] we employ the numerical solution of the renormali-
sation-group equation below. Our results do not change
qualitatively if we use the analytical running instead.

To end this section, we briefly summarise the argument
on the renormalons included in Etot(r).
(1) After the O(ΛQCD) renormalon is cancelled, the per-
turbative series of Etot(r) is estimated to have the follow-
ing behaviour. The O(αn+1

S ) term of the series expansion
of Etot(r) behaves as const. × r2 n! (β0αS/(6π))n n3δ/2 for
n � 1, where δ = β1/β2

0 . Because of the factorial n!, the
series is only an asymptotic series, namely it diverges for

large enough n. Hence, there is a limitation to the achiev-
able accuracy of the perturbative prediction for Etot(r). It
can be estimated from the size of the terms around the min-
imum, n ≈ 6π/(β0αS); this gives an uncertainty of order
Λ3

QCDr2. The behaviour of the series depends on the value
of the expanding parameter αS ≡ αS(µ), or equivalently,
on the choice of the scale µ. The uncertainty, Λ3

QCDr2,
is independent of αS(µ) or µ, nonetheless. (For details,
see [22,23].)

(2) Based on the above argument, we may optimise con-
vergence of the series by appropriately choosing the scale
µ. In this case, even with the series expansion up to O(α3

S)
we may estimate the uncertainty of Etot(r) to be of order
Λ3

QCDr2 from the size of the truncated next-order term or
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Fig. 2. Comparison between perturbative and lattice calculations of the QCD potential. The lines correspond to masses
between 1 and 6 GeV in steps of 0.2 GeV (solid lines for integer masses, 1 GeV � 2.5/r0, the lines for m � 4 GeV are masked by
the other lines). The points correspond to Bali/Schilling (◦) [24], Takahashi et al. (�) [25], JLQCD (�) [26] and Necco/Sommer
(•) [27]. Error bars for the statistical errors of the lattice data are plotted where given by the authors, but they are generally
smaller than the size of the symbols. Lines are plotted only when the total energies determined by the two prescriptions differ
by less than 0.5/r0

from the scale dependence of Etot(r) around the optimised
scale. Indeed, explicit numerical examinations of Etot(r)
up to O(α3

S) support this argument [7, 8, 10,11].
(3) One may factorise the infrared part of Etot(r) using
an operator product expansion [2]. In this way, one may
absorb the order Λ3

QCDr2 renormalon into a matrix el-
ement of an operator, while defining a Wilson coefficient
perturbatively that is free from the renormalon and depen-
dent on the factorisation scale. More generally, one may
separate Etot(r) into perturbative coefficients free from
renormalons and non-perturbative parameters (matrix el-
ements) including renormalons. (This factorisation is be-
yond the scope of the present paper.)

3 Comparison of perturbative
and lattice calculations

For comparison with the perturbative predictions of the
QCD potential as explained in the previous section, four
different sets of lattice data calculated in the quenched ap-
proximation are used: those from [24] (β = 6.8), from [25]
(β = 6.0), from [26] (β = 6.0) and from [27] (6.57 ≤ β ≤
6.92). All the lattice data have been corrected using the
lattice Coulomb potential to match the continuum defini-
tion of the QCD potential at short distances.

For comparison of the perturbative and the lattice data,
we have to account for an r-independent additive constant
that is not determined by lattice calculations. Since pertur-
bative calculations are more reliable at small distances and
lattice calculations are more reliable at larger distances,
we adopt the following procedure: the different sets of lat-
tice data are converted to physical units with the lattice
spacing as given by the authors of the respective papers,
or (where the lattice spacing was not explicitly derived)
by fixing the Sommer scale with the phenomenological po-
tential fit as performed by the authors of the respective
papers. Then we adjust the sets of lattice data among each
other to make them coincide at r = r0 by adding constants.
Finally we shift both the perturbative and the lattice data
so that they vanish at r = r0/4, where in the case of the
lattice results the data from [27] is used.

We see that the sets of lattice data [24–27] correspond-
ing to different values of β are located almost on the same
curve (Fig. 2). This shows that the dependence of the lat-
tice results on the lattice spacing is negligibly small, i.e.
discretization errors in the lattice calculations are negligi-
ble in our comparison.

As described before, the perturbative calculation has
two input parameters, these can be e.g. ΛMS and m. The
potential depends on the mass m (after shifting to Etot
(r0/4) = 0) only through the log(m/µ)-terms in the rela-
tion between the pole mass and the MS mass. We find that
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Fig. 3. Comparison between perturbative and lattice calculations of the QCD potential. The lines correspond to masses
between 1 and 6 GeV in steps of 0.2 GeV. Lines are plotted only when a +10% scale change makes the total energy vary by
less than 20%

(after shifting the curves to make them coincide at r0/4),
for small distances r < r0/4 the curves are identical, for
larger distances the curves corresponding to different m
start to differ from each other. The quality of convergence
and the stability against scale changes varies strongly with
m.

In Fig. 2 we plot the QCD potential for various values
of m between 1 and 6 GeV in steps of 0.2 GeV. To ensure
that only reasonably stable and reliable predictions are
shown, the curves are drawn only in those points, where
the energies as determined by the two different scale-fixing
prescriptions differ by less than 0.5/r0. We find that the re-
sulting curves span a band around the lattice data that in-
creases in width with increasing r. The width of this band is
consistent with the expected theoretical uncertainty due to
the uncancelled next-to-leading renormalon [17], ± 1

2Λ3r2,
with Λ = 300 MeV, indicated by the error bars in the
figure. We find a very good agreement between the lat-
tice results and the curves that show the largest range of
convergence, but even for those choices of m where the
prediction becomes unstable earlier, the agreement is still
good.

To show that the good agreement between the pertur-
bative and the lattice calculations does not depend on a
specific stability criterion, in Fig. 3 we show the same com-
parison as in Fig. 2, but this time we do not consider the
difference between the energies as determined with the two
different scale prescriptions, but the stability against scale
change. We plot the curves only in those points where a

scale change of +10% makes the total energy vary by less
than ±20%.

We would like to stress that we do not tune the mass
parameter to achieve good agreement with the lattice re-
sults, but we vary it to find those values of m that give
optimal convergence of the perturbative series. It can be
seen in the figures that the curves for those values of m
that have the largest range of convergence, the agreement
with the lattice data is close to optimal.

We now compare our results to those of [11]. In that
paper, a fixed, r-independent scale µ is used for the pertur-
bative QCD potential. We find that our formalism almost
exactly reproduces the curves of [11] for large values of m
(Fig. 4). The explanation for this behaviour is the follow-
ing. While in our formalism the scale is strongly dependent
on r even for large masses (see Fig. 5), the scale tends to
rise with m. For m ∼ 3 GeV the r-dependent scale varies
around 1 GeV, for m ∼ 10 GeV it varies around 3 GeV.
Independent of m, however, the scale dependence of Etot
is strong for scales around 1 GeV and very weak for scales
around 3 GeV (Fig. 6); therefore, choosing a large m in our
formalism gives a result very close to the treatment of [11].
We can also see that for these large masses our stability
criteria indicate a range of convergence up to about r0/2.
Our analysis is therefore consistent with that of [11], and
the results of the latter are reproduced with our formalism
by choosing large values for m.

The perturbative predictions which are most stable
at long distances in Figs. 2 and 3 (m ∼ 2–3 GeV) turn
out to be less steep than the lattice data at r/r0 � 0.5.
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Fig. 5. Scales as determined by the first prescription (5) for values of m between 1 and 12 GeV

Qualitatively, we expect that the larger the strong cou-
pling constant the steeper the potential, because the in-
terquark force becomes stronger [7]. This behaviour can
be seen in Fig. 7 where we have varied ΛMS r0 in the in-
terval given in [19], ΛMS = (0.602 ± 0.048) r−1

0 . The lower
bound, centre and upper bound of this interval correspond
to αnl=0

S (MZ) = 0.0801, 0.0811 and 0.08205, respectively.

The larger value for ΛMS (if r0 ≈ 2.5 GeV−1 is fixed) re-
sults in a slightly steeper curve that reproduces the slope
of the lattice data better than the central value.

We would like to make two comments in this context.
(i) We compared the perturbative QCD potential (includ-
ing effects of light quark loops) with phenomenological po-
tentials in [10]. There, the perturbative prediction with the
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Fig. 6. Dependence of Etot(r = 0.3 r0) on the scale µ for values of m between 1 and 15 GeV. Independent of m, the scale
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Fig. 7. Dependence of the perturbative results on ΛMSr0, the curves shown correspond to the centre and upper and lower
bounds of the error interval given in [19]. The middle curve corresponds to the one in Fig. 3 that has the error bars attached
to it (m = 2 GeV)

input αS(MZ) = 0.1181 (the present central value) turned
out also to be slightly less steep than the phenomenolog-
ical potentials at long distances. As a result, a somewhat
larger coupling αS(MZ) = 0.1191–0.1201 was favoured for
a better agreement with the phenomenological potentials.
(ii) In [11], the O(α4

S) correction to the perturbative QCD
potential (including the ultrasoft effects) was estimated

and included in a comparison with the lattice data. The es-
timated correction makes the potential somewhat steeper.
This is consistent with a naive expectation that such an
effect is caused by an acceleration of the running of the
coupling constant due to the 4-loop coefficient of the beta
function. Thus, agreement of the perturbative potential
with the lattice data may become even better than our
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present analysis when the full next-order correction is cal-
culated and included in the future. Furthermore, we have
confirmed that the agreement between the perturbative
and lattice data becomes even better if we use the 4-loop
running of the coupling constant.

4 Conclusions

We have compared perturbative QCD and lattice QCD
predictions for the QCD potential. We examined the per-
turbative QCD prediction for Etot(r) = 2mpole+VQCD(r),
taking specific prescriptions for fixing the renormalisation
scale µ. We find that, by adjusting the mass parameter
m, the perturbative prediction can be made stable up to
distances r ∼ 3 r0. Whenever we obtain stable perturba-
tive predictions, they agree with the lattice data within
the uncertainty estimated from the residual renormalon of
order Λ3r2. We emphasise that we do not tune m to fit
the lattice data, but we tune m to achieve stability of the
perturbative prediction, and then the agreement follows.
Comparisons of perturbative QCD predictions and lattice
data have been performed before, e.g. in [11,12], but only
up to distances of 0.5 r0 and 0.9 r0, respectively. If we take
an optimal value of m, our prescriptions for the perturba-
tive prediction of the QCD potential seem to give stable
predictions to furthest distances among those examined so
far.

Our analysis provides a firmer ground to the analy-
ses of [6, 9, 13], which predicted the bottomonium energy
levels up to the n = 3 states using (essentially) the same
scale-fixing prescriptions as in the present analysis.4 We
note that the same conclusion could not be drawn directly
from the previous comparisons [8, 11,12] between the lat-
tice and perturbative computations of the QCD potential,
because the prescriptions adopted in those analyses have
never been used in perturbative computations of the heavy
quarkonium level structure including higher excited states.
In the light of our present result, the scale-fixing prescrip-
tion adopted here is optimal for stable predictions for the
energy levels of excited states. Our result supports the es-
timates of theoretical uncertainties by the next-to-leading
renormalon made in [6, 9, 13].

Whenever stable perturbative predictions are obtained,
all the perturbative predictions with different prescrip-
tions for subtracting the leading renormalon agree with
one another and also with the lattice data, within the esti-
mated uncertainty. In particular, our perturbative predic-
tions for large m reproduce the O(α3

S) perturbative predic-
tion of [11]. The fact that the different prescriptions have
led to mutually consistent perturbative predictions of the
QCD potential, endorses the consistency of the perturba-
tive analyses. The comparisons between the perturbative
and lattice data, together with other types of comparisons,

4 The value of m, which stabilizes the perturbative predic-
tions for Etot(r) up to the furthest distance, lies between the
bottom and charm quark masses. In this sense, we are in a
lucky situation in the predictions of the charmonium and bot-
tomonium spectra

provide evidence to the hypothesis that the perturbative
prediction agrees with full QCD within the order Λ3r2 un-
certainty. In particular, we consider the independent ex-
aminations corresponding to the physical reality (nl = 4
with the non-zero charm quark mass [10]) and to the hy-
pothetical case (nl = 0) to be non-trivial cross checks with
respect to the validity of the hypothesis. We may further
make non-trivial tests of the hypothesis by varying the
number of quark flavours and even the gauge group in
comparing the perturbative and lattice calculations.

It is quite surprising that the perturbative calculations
turn out to give stable predictions up to such long distances
[3r0 ≈ (130 MeV)−1]. At the present stage the reason is
unclear. Although we do not know a clear-cut criterion
at which distance a perturbative QCD prediction should
break down, possible arguments may be as follows. One
point is that the relevant scale µ for Etot(r) is not equal
to 1/r but considerably larger. Another point that may be
worth noting is that the system under consideration would
be optimally suited for perturbative QCD computations. It
is a colour singlet system having a localised spatial extent,
so that we may expect the decoupling of IR degrees of
freedom to be realised in a most natural way.5
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Appendix

In this paper we expand the perturbative series of the QCD
potential and the quark pole mass in the strong coupling
constant defined in the MS scheme. The coupling constant
obeys the renormalisation-group equation:

µ2 d
dµ2 αs(µ) = β(αS(µ))

= − αS(µ)
∞∑

n=0

βn

(
αS(µ)

4π

)n+1

. (7)

We include the coefficients of the beta function up to 3
loops in our analysis6, i.e. β0 = 11, β1 = 102, β2 = 2857/2
(nl = 0), and βn = 0 for n ≥ 3.

In rewriting αS(m) in terms of αS(µ) in the fixed-order
expression of Etot(r), we use the perturbative solution of
(7):

αS(m) = αS(µ)

[
1 +

αS(µ)
π

β0

2
log

( µ

m

)
(8)

5 It may be contrasted with e.g. perturbative QCD calcula-
tions of parton scattering amplitudes, where spatially separated
coloured partons exist as asymptotic states

6 Although the 4-loop coefficient is available, we consider the
use of the 3-loop beta function to be more consistent with the
analysis of the fixed-order perturbative series up to O(α3

S)
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+
(

αS(µ)
π

)2 {
β2

0

4
log2

( µ

m

)
+

β1

8
log

( µ

m

)}
+ . . .

]
.

This relation is inserted to (3) and the series expansion
is truncated at order αS(µ)3. Then Etot(r) is given as a
function of r, m, µ and αS(µ).

The value of αS(µ) is determined by the renormali-
sation-group evolution from the input Lambda parame-
ter defined in the MS scheme, ΛMS; see e.g. [28] for the
definition of ΛMS. The renormalisation-group evolution of
αS(µ) is calculated in two different ways in this paper.
When we refer to “numerical running”, we solve the re-
normalisation-group equation (7) numerically. In this case,
ΛMS = 0.65573 · · · × µLandau (nl = 0), where µLandau is
the position of the infrared singularity (Landau singular-
ity) of the running coupling constant αS(µ). On the other
hand, when we refer to “analytical running”, we use an ap-
proximate analytic solution of the renormalisation-group
equation:

αS(µ)
π

≈ 4
β0 L

− β1 log L

(β0 L)2
(9)

+
1

(β0 L)3

[
β2

1

4
(log2 L − log L − 1) + β2

]
,

where L = log(µ2/Λ2
MS

) and terms of O(1/L4) have been
neglected.
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